32,432 research outputs found

    On the momentum-dependence of K−K^{-}-nuclear potentials

    Get PDF
    The momentum dependent K−K^{-}-nucleus optical potentials are obtained based on the relativistic mean-field theory. By considering the quarks coordinates of K−K^- meson, we introduced a momentum-dependent "form factor" to modify the coupling vertexes. The parameters in the form factors are determined by fitting the experimental K−K^{-}-nucleus scattering data. It is found that the real part of the optical potentials decrease with increasing K−K^- momenta, however the imaginary potentials increase at first with increasing momenta up to Pk=450∼550P_k=450\sim 550 MeV and then decrease. By comparing the calculated K−K^- mean free paths with those from K−nK^-n/K−pK^-p scattering data, we suggested that the real potential depth is V0∼80V_0\sim 80 MeV, and the imaginary potential parameter is W0∼65W_0\sim 65 MeV.Comment: 9 pages, 4 figure

    Iron-based layered superconductor LaO1−x_{1-x}Fx_xFeAs: an antiferromagnetic semimetal

    Full text link
    We have studied the newly found superconductor compound LaO1−x_{1-x}Fx_xFeAs through the first-principles density functional theory calculations. We find that the parent compound LaOFeAs is a quasi-2-dimensional antiferromgnetic semimetal with most carriers being electrons and with a magnetic moment of 2.3μB2.3\mu_B located around each Fe atom on the Fe-Fe square lattice. Furthermore this is a commensurate antiferromagnetic spin density wave due to the Fermi surface nesting, which is robust against the F-doping. The observed superconduction happens on the Fe-Fe antiferromagnetic layer, suggesting a new superconductivity mechanism, mediated by the spin fluctuations. An abrupt change on the Hall measurement is further predicted for the parent compound LaOFeAs.Comment: 4 pages, 7 figure

    Exploration of Resonant Continuum and Giant Resonance in the Relativistic Approach

    Get PDF
    Single-particle resonant-states in the continuum are determined by solving scattering states of the Dirac equation with proper asymptotic conditions in the relativistic mean field theory (RMF). The regular and irregular solutions of the Dirac equation at a large radius where the nuclear potentials vanish are relativistic Coulomb wave functions, which are calculated numerically. Energies, widths and wave functions of single-particle resonance states in the continuum for ^{120}Sn are studied in the RMF with the parameter set of NL3. The isoscalar giant octupole resonance of ^{120}Sn is investigated in a fully consistent relativistic random phase approximation. Comparing the results with including full continuum states and only those single-particle resonances we find that the contributions from those resonant-states dominate in the nuclear giant resonant processes.Comment: 16 pages, 2 figure

    Exact solution of the two-axis countertwisting Hamiltonian for the half-integer JJ case

    Full text link
    Bethe ansatz solutions of the two-axis countertwisting Hamiltonian for any (integer and half-integer) JJ are derived based on the Jordan-Schwinger (differential) boson realization of the SU(2)SU(2) algebra after desired Euler rotations, where JJ is the total angular momentum quantum number of the system. It is shown that solutions to the Bethe ansatz equations can be obtained as zeros of the extended Heine-Stieltjes polynomials. Two sets of solutions, with solution number being J+1J+1 and JJ respectively when JJ is an integer and J+1/2J+1/2 each when JJ is a half-integer, are obtained. Properties of the zeros of the related extended Heine-Stieltjes polynomials for half-integer JJ cases are discussed. It is clearly shown that double degenerate level energies for half-integer JJ are symmetric with respect to the E=0E=0 axis. It is also shown that the excitation energies of the `yrast' and other `yrare' bands can all be asymptotically given by quadratic functions of JJ, especially when JJ is large.Comment: LaTex 12 pages, 3 figures. Major cosmetic type revision. arXiv admin note: text overlap with arXiv:1609.0558

    The K−p→Σ0π0K^-p\to \Sigma^0\pi^0 reaction at low energies in a chiral quark model

    Full text link
    A chiral quark-model approach is extended to the study of the KˉN\bar{K}N scattering at low energies. The process of K−p→Σ0π0K^-p\to \Sigma^0\pi^0 at PK≲800P_K\lesssim 800 MeV/c (i.e. the center mass energy W≲1.7W\lesssim 1.7 GeV) is investigated. This approach is successful in describing the differential cross sections and total cross section with the roles of the low-lying Λ\Lambda resonances in n=1n=1 shells clarified. The Λ(1405)S01\Lambda(1405)S_{01} dominates the reactions over the energy region considered here. Around PK≃400P_K\simeq 400 MeV/c, the Λ(1520)D03\Lambda(1520)D_{03} is responsible for a strong resonant peak in the cross section. The Λ(1670)S01\Lambda(1670)S_{01} has obvious contributions around PK=750P_K=750 MeV/c, while the contribution of Λ(1690)D03\Lambda(1690)D_{03} is less important in this energy region. The non-resonant background contributions, i.e. uu-channel and tt-channel, also play important roles in the explanation of the angular distributions due to amplitude interferences.Comment: 18 pages and 7 figure

    Exact solution of the two-axis countertwisting Hamiltonian

    Get PDF
    It is shown that the two-axis countertwisting Hamiltonian is exactly solvable when the quantum number of the total angular momentum of the system is an integer after the Jordan-Schwinger (differential) boson realization of the SU(2) algebra. Algebraic Bethe ansatz is used to get the exact solution with the help of the SU(1,1) algebraic structure, from which a set of Bethe ansatz equations of the problem is derived. It is shown that solutions of the Bethe ansatz equations can be obtained as zeros of the Heine-Stieltjes polynomials. The total number of the four sets of the zeros equals exactly to 2J+12J+1 for a given integer angular momentum quantum number JJ, which proves the completeness of the solutions. It is also shown that double degeneracy in level energies may also occur in the J→∞J\rightarrow\infty limit for integer JJ case except a unique non-degenerate level with zero excitation energy.Comment: LaTex 10 pages. Version to appear in Annals of Physic
    • …
    corecore